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Overview 

•! Semantic Processing - Introduction 

•! Logic-based meaning representation and processing:
 Truth-conditional interpretation, entailment, deduction 

•! Word Meaning: Lexical-semantic resources, ontologies,

 similarity-based approaches 

–! Informal overview 

–! Semantic Relations, WordNet 

–! Semantic similarity measures 

–! Comparison 

•! Semantic Composition: Composing sentence and text
 meaning from word meaning 

•! Textual Entailment and Inference 
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WordNet vs. VSM Semantics 

•! WordNet  

–! uses directed and truth-conditionally grounded semantic relations 

 supporting both logical and similarity-based reasoning 

–! decribes „paradigmatic“ semantic relations only (i.e., concepts that are
 substitutable for each other, like dolphin – whale - mammal) 

–! is in some sense more reliable/less noisy than VSM semantics, but 

 varies in granularity of sense distinctions, classification steps  

–! is an expensive, hand-crafted resource 

•! VSM models of lexical meaning 
–! uses a symmetric concept of word similarity 

–! supporting similarity-based approaches of information access, but no
 transparent relation to logic and truth-conditions 

–! describes all kinds of similarity phenomena, including the „syntagmatic“
 phenomena of collocation, script- or scenario-based relatedness (e.g.,
 dolphin – water – sea) 

–! is obtained by unsupervised statistical methods, therefore inexpensive
 and easily to obtain for new languages and sub-languages. 
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WordNet plus VSM Semantics 

•! WordNet also contributes to similarity-based approaches of
 information access: 

–! Query Expansion 

–! WN similarity measures 

•! Note: WN similarity measures are symmetric (like corpus-based
 similarity measures), but they describe paradigmatic relations:
 (lunch- dinner;  starter – main dish – dessert), not scenario-based
 ones (dinner – waiter – menu - bill). WN and distribution-based
 similarity measures complement each other. 

•! Corpus-based similarity measures can be used for resource
 extension, and thereby indirectly contribute to knowledge-based
 approaches: E.g., find nearest neighbour of a word (with respect to a
 sim relation) which is not in WordNet, and add it to the synset. 
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Neither WN nor VSM Semantics 

•! … have a good answer to the problem of Word-Sense
 Disambiguation: How do we get from a word (token,
 occurrence of a word in a text or utterance) to its
 contextually appropriate sense? 

•! For offline computation of word similarity (e.g., through
 WordNet distance) and computation of document
 similarity often very simple heuristics is used: 
–! Select the first WN sense (WN senses are ordered by frequency

 in WordNet) 

–! Take all sentences to be equally probable, and compute the
 distance between words w1 and w2 as the arithmetic mean of the
 distances between all senses of w1 and w2, respectively. 
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WSD, Selectional Preferences 

•! For the online interpretation of individual NL expressions
 in context, we have to solve the WSD task, which is one
 of the hardest problems in NL interpretation. 

•! A partial answer comes with semantic composition,
 through so-called selectional constraints or selectional
 preferences, requirements on the semantic type of
 arguments. Example: 
–! They begin at ten is ambiguous between two readings of the verb

 begin. 

–! The classes begin at ten is disambiguated by the information that
 the subject denotes an event, not a person. 

FLST 2008/2009  © Manfred Pinkal, Saarland University 7 

Overview 

•! Semantic Processing - Introduction 

•! Logic-based meaning representation and processing:
 Truth-conditional interpretation, entailment, deduction 

•! Word Meaning: Lexical-semantic resources, ontologies,

 similarity-based approaches 

•! Semantic Composition: Composing sentence and text
 meaning from word meaning 

•! Textual Entailment and Inference 

FLST 2008/2009  © Manfred Pinkal, Saarland University 8 

Text Hypothesis 

SRText SRHypothesis 

Semantic  

Interpretation 

! 

Logical Entailment 

! 

Semantic Similarity 
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Basic Semantic Composition 

S 

NP VP 

V NP 
John 

likes    Mary 

like'(_,_) mary' 

john' 

like'(_,mary') 

like'(john',mary') 

FLST 2008/2009  © Manfred Pinkal, Saarland University 

A Challenge for Semantic Composition 

!d (student(d)" #p (paper(p) $present(d,p))) 

Every student presented a paper 
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•! In general, FOL semantic representations do not

 structurally correspond to the syntactic structure
 of NL sentences. 

•! How do we model the semantic composition
 process? 

•! We approach the problem via a detour: Looking
 into higher-order phenomena in NL semantics 
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FOL Limitations 

John is a married piano player 

John is a blond criminal 

John is a poor piano player 

John is an alleged criminal 

piano-player(j) $ married(j)  

criminal(j) $ blond(j)  

piano-player(j) $ poor(j) ?  

criminal(j) $ alleged(j) ??? 
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FOL Limitations 

Yesterday, it rained. 

Probably, it is raining. 

Unfortunately, it is raining. 

Bill is blond. Blond is a hair colour.  

! Bill is a hair colour  
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The Language of Type Theory 

Types: 

•! The set of basic types is {e, t} : 

–! e (for entity) is the type of individual terms 

–! t (for truth value) is the type of formulas 

•! All pairs <%, &> made up of (basic or complex) types %, &
 are types. <%, &> is the type of functions which map

 arguments of type % to values of type &. 

•! In short: The set of types is the smallest set T such that

 e,t'T, and if %,& 'T, then also <%,&> 'T.  
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Some Useful Types for NL Semantics 

•! Proper name   bill: e 

•! Sentence    it_rains: t 

•! One-place predicate constant: 

     work, student: <e,t> 

•! Two-place relation:   

     like, larger_than: <e,<e,t>> 

•! Sentence adverbial:         

     yesterday, unfortunately: <t,t> 

•! Attributive adjective:   

     married, poor, alleged: <<e,t>,<e,t>> 

•! Degree modifier:   

     very, relatively: <<<e,t>,<e,t>>,<<e,t>,<e,t>>> 
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Second-order predicates 

 Bill is blond. Blond is a hair colour. 

        bill: e    blond: <e,t>   

     blond(bill): t 

Blond is a hair colour. 

blond: <e,t>   hair_colour : <<e,t>,t> 

    hair_colour (blond): t 

Bill is a hair colour 

•! Hair-colour is a second-order predicate.
 hair_colour(bill) is not even a well-formed
 expression. 
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Type-theoretic syntax 

•! Vocabulary: 

–! A (possibly empty) set of constants: Con&, for every type & 

–! A set of variables: Var&, for every type & 

–! The usual FOL operators: connectives, quantifiers, equality 

•! The sets of well-formed expressions WE& for every type &

 are given by: 
–! Con& " Var&( WE& for every type & 

–! If ) ' WE<%, &>, * ' WE% , then )(*) ' WE& . 

–! If A, B are in WEt , then so are ¬ A, (A$B), (A+B), (A"B),(A,B) 

–! If A is in WEt , then so are !vA and #vA, where v is a variable of

 arbitrary type. 

–! If ), * are well-formed expressions of the same type, then )=* '
 WEt. 
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Function Application 

•! The most important syntactic operation in type-theory is
 function application: 

  If ) ' WE<%, &>, * ' WE% , then )(*) ' WE& . 

•! A functor of complex type combines with an appropriate

 argument to a (more complex) expression of less
 complex type. 
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Function Application: Examples 

Bill drives fast 

   drive: <e,t>  fast: <<e,t>,<e,t>> 

  bill: e    fast(drive): <e,t> 

  fast(drive)(bill): t 

Mary works in Saarbrücken 

  mary: e  work: <e,t>    in: <e,<t,t>>     sb: e  

   work(mary): t         in(sb): <t,t> 

  in(sb)(work(mary)): t 
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Using Higher-Order Variables 

•! Bill has the same hair colour as John.   

  #G (hair_colour(G) $ G (bill) $ G (john)) 

•! Santa Claus has all the attributes of a sadist.  

•! !F !a(sadist(a) $ F (a) " F(b)) 
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Type-theoretic semantics [1] 

•! Let U be a non-empty set of entities. The domain of

 possible denotations D& for every type & is given by: 

–! De = U 

–! Dt = {0,1} 
–! D<%, &> is the set of all functions from D% to D&  

•! A model structure for a type theoretic language: 

  M = <U, V>, where   

–! U (or UM) is a non-empty domain of individuals 

–! V (or VM) is an interpretation function, which assigns to every

 member of Con& an element of D&. 

•! Variable assignment g assigns every variable of type &  a
 member of D&. 
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Type-theoretic semantics [2] 

•! Interpretation (with respect to model structure M and variable

 assignment g): 

[[)]] M,g
 =  VM()), if ) constant 

[[)]] M,g
 =  g()), if ) variable 

[[)(*)]]M,g  = [[)]]M,g([[*]]M,g)    

[[¬-]]M,g  = 1  iff  [[-]]M,g = 0 

[[- $ .]]M,g  = 1  iff  [[-]]M,g = 1 and [[.]]M,g = 1,  etc. 

If v 'Var&,  [[#v-]]M,g  = 1  iff  there is a ' D& such that [[-]]M,g[v/a]  = 1  

If v 'Var&, [[!v-]]M,g  = 1  iff  for all a ' D& : [[-]] M,g[v/a] = 1 

[[)=*]]M,g  = 1  iff   [[)]]M,g = [[*]]M,g 

FLST 2008/2009  © Manfred Pinkal, Saarland University 

Semantics construction 

•! John sleeps. S 

sleep(john) : t 

NP 

john : e 

PN 

john : e 

John 

VP 

sleep : <e,t> 

IV 

sleep : <e,t> 

sleep 
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Semantics construction 

•! John likes Mary. 

S 

like(mary)(john) : t 

NP 

john : e 

PN 

john : e 

John 

VP 

like(mary) : <e,t> 

TV 

like : <e,<e,t>> 

NP 

mary : e 

PN 

mary : e 
likes 

Mary 
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The composition problem again 

!d (student(d)" #p (paper(p) $present(d,p))) 

Every student presented a paper 
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The Semantics of Quantified NPs 

John works. 

  john: e    work: <e,t> 

  work(john): t 

Every student works. 

  every-student: e  work: <e,t> 

    every-student(work): t 

 This does not work !!! 
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The Semantics of Quantified NPs 

 So we try it the other way round: 

 Every student works. 

  every-student: <<e,t>,t> work: <e,t> 

   every-student(work): t 

 'Every student' is a complex second-order predicate that

 is true of a first-order predicate, if all students are in the

 denotation of that predicate. 
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What about Deduction? 

•! We have replaced the usual quantifier representation with

 higher-order non-logical constants (“every_student”), to

 facilitate semantic composition. 

•! This means that we cannot use FOL deduction anymore. 

•! Is there any way out of the dilemma?  

28 

Text Hypothesis 

!x(truck(x)"motor_vehicle(x)) 

#x(truck(x) $ sell(volvo, x)) 
#x(motor_vehicle(x) $ sell(volvo, x)) 

Semantic  

Interpretation 

" 
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Another Detour 

John drinks and drives 

Drinking and driving is dangerous 
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Lambda-Abstraction 

•!  /x[drive(x)$drink(x)] is a composite predicate, whose

 meaning can be paraphrased with “an x such that x

 drinks and drives” or “to be somebody who drinks and
 drives”   

         

 drive: <e,t>  x:e   drink: <e,t>  x:e 

   drive(x): t        drink(x): t 

       drive(x)$drink(x): t 

   /x[drive(x)$drink(x)]: <e,t> 
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Example 

           drive: <e,t>  x:e     drink: <e,t>  x:e 

             drive(x): t        drink(x): t 

                                                                 drive(x)$drink(x): t 

                               john : e                 /x[drive(x)$drink(x)]: <e,t> 

                                    (/x[drive(x)$drink(x)])(john) : t 

 John drives and drinks.   
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*-Conversion 

•! *-conversion or *-reduction:  

/v)(*) 0 )[*/v] 

•! An application of a /-expression /v) to an
 argument * is equivalent to ), where all
 occurrences of the /-variable v in ) are

 replaced by *. 
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Example 

           drive: <e,t>  x:e     drink: <e,t>  x:e 

             drive(x): t        drink(x): t 

                                                                 drive(x)$drink(x): t 

                               john : e                 /x[drive(x)$drink(x)]: <e,t> 

                                    (/x[drive(x)$drink(x)])(john) : t 

                                  1* drive(john) $ drink(john) : t 

 John drives and drinks.   
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The composition problem again 

!d (student(d)" #p (paper(p) $present(d,p))) 

Every student presented a paper 
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Quantified NPs as /-expressions 

•! The semantic interpretation of a universally quantified
 noun phrase can be straightforwardly encoded as a

 lambda term: 

 /G !x(student(x)" G(x)) 

•! Accordingly, the determiner every can be represented as: 

  /F/G!x(F(x)" G(x)) 
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An example 

•! Every student works. S 

 (/G!x(student(x)" G(x)))(work) : t 

 1 !x(student(x)" work(x)) : t 

NP 

(/F/G!x(F(x)" G(x)))(student) : <<e,t>,t> 

 1 /G!x(student(x)" G(x)) : <<e,t>,t> 

every 

VP 

work : <e,t> 

VP 

work : <e,t> 

works 

N 

student : <e,t> 
Det 

 /F/G!x(F(x)" G(x)) : <<e,t>,<<e,t>,t>> 

student 
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Recommended Reading 

•! Textbook: L.T.F. Gamut, Logic, Language, and

 Meaning. University of Chicago Press 1991 

 Volume1: Introduction to Logic.  

 Volume2: Intensional Logic and Logical Grammar.  
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Text Hypothesis 

SRText SRHypothesis 

Semantic  

Interpretation 

! 

Logical Entailment 

! 

Semantic Similarity 

Lexical- 

semantic 
knowledge 

World  

Knowledge 
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World-Knowledge and Inference 

Text:  Security authorities have declared a state of maximum
 emergency in Guatemala, which is located directly in the
 path of the hurricane. 

Hypothesis: There is a state of maximum emergency in
 Guatemala because of the hurricane. 
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Default Inferences 

Text: As a real native Detroiter, I want to remind everyone
 that Madonna is from Bay City, Mich., a nice place in the
 thumb of the state's lower peninsula. 

Hypothesis: Madonna was born in Bay City, Mich. 
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Textual Entailment 

„We say that T entails H if the meaning of H can be inferred from the  
meaning of T, as would typically be interpreted by people. This  
somewhat informal definition is based on (and assumes) common  
human understanding of language as well as common background  
knowledge.”"

"Monz, C. and de Rijke, M. (2001). Light-Weight Subsumption
 checking for computational semantics. ICOS 3"
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Modelling of Textual Entailment 

•! In principle, truth-based logical entailment nor distribution
-based probabilistic similarity measures cannot give a full
 account of the intuitive concept of textual entailment:"

•! Logical entailment is always strict entailment, whereas the
 intuitive entailment concept of entailment is based on
 (degrees of) plausibility (take the hypothesis to be true,
 until you find counter-evidence)."

•! Similarity is symmetric: a#b iff b#a, where entailment is
 intuitively an assymmetric, directed relation."

•! Both concepts can only count as rough approximations."
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Modelling of Textual Entailment 

•! In principle, truth-based logical entailment nor distribution
-based probabilistic similarity measures cannot give a full
 account of the intuitive concept of textual entailment:"

•! Logical entailment is always strict entailment, whereas the
 intuitive entailment concept of entailment is based on
 (degrees of) plausibility (take the hypothesis to be true,
 until you find counter-evidence)."

•! Similarity is symmetric: a#b iff b#a, where entailment is
 intuitively an asymmetric, directed relation."

•! Both concepts can only count as rough approximations."

•! In practice, the performance of alternative approaches
 has been (approximately) assessed in the RTE Shared
 Task. "
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The RTE Task 

•! RTE: Recognizing Textual Entailment 

•! Training corpus and test corpus 
–! 800 T-H pairs each 

–! 400 true, 400 false ones 

–! formed on the basis of material taken from IR, IE, Q&A,
 Summarization tasks 

–! no domain restriction 

•! Task: Build a system that matches the Y/N
 annotation of the corpus as close as possible 

•! Dagan, Glickmann, Magnini, RTE 2004
 Workshop Proceedings 
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RTE: Examples 

Text-Hypothesis Pairs, Example: 

Text: The Arabic-language television network Al-Jazeera
 reports it has received a statement and a videotape from
 militants. 

Hypothesis: Al-Jazeera is an Arabic-language television
 network. 

Entailed: Yes 
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RTE: Examples 

Text: His wife Strida won a seat in parliament after forging

 an alliance with the main anti-Syrian coalition in the

 recent election.!

Hypothesis: Strida elected to parliament.!

Entailed: Yes"
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RTE Examples 

Text: With $549 million in cash as of June 30, Google can
 easily afford to make amends. 

Hypothesis: Some 30 million shares have been assigned to
 the company's workers. 

Entailed: No 
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RTE: Examples 

Text:  Oscar-winning actor Nicolas Cage‘s new son and
 Superman have sth. in common 

Hypothesis:  Nicolas Cage‘s new son was awarded an
 Oscar.    

Entailed: No 
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RTE: Examples"

Text: Wyniemko, now 54 and living in Rochester Hills, was

 arrested and tried in 1994 for a rape in Clinton Township.!

Hypothesis: Wyniemko was accused of rape.!

Entailed: Yes"
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Architecture of RTE System 

Y / N"

Feature Extraction 

Classifier (ML System) 

Linguistic Preprocessing 

Text and Hypothesis 

Linguistic representation"
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Information Used in different RTE
 Systems"

•! Word Overlap 

•! Semantic Similarity based on Vector-Space
 Models 

•! WordNet Information 

•! Syntactic Information 

•! World Knowledge 

•! Logical Inference 
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General Tendency of Results 

•! Systems relying on shallow information (word overlap, distributional
 similarity) perform better than naïve baseline of 50%, but  only to
 some degree (60-65%)."

•! Systems relying on deep linguistic analysis and logical entailment
 perform drastically worse than naïve baseline. Reasons are, among
 other things:"

–! Lack of robustness due to sequence of complex analysis steps
 requiring a large amount of precise input information."

–! Lack of reliable disambiguation techniques."

–! Lack of world-knowledge required for deduction"

•! But: Systems using deep processing techniques are significantly
 more precise on cases they can treat."

•! The best results are obtained by combination of deep and shallow

 techniques. "


